
Inverse Kinematics Algorithm in Dual Quaternion Form

Based on FABRIK (Forward and Backward Reach Inverse

Kinematics) Algorithm

Muhammad Hafidz Bin Azmi1, a) and Sergey Akhramovich2, b)

1Department of System Analysis and Control 604, Moscow Aviation Institute, Moscow Russia

a)hafidzazmi07@icloud.com

b)akhramovichsa@gmail.com

Abstract. This article examines a formulation method to solve the Inverse Kinematics problem of serial robot manipulators

in Dual Quaternion form. The formulation is based on Forward and Backward Reaching Inverse Kinematics (FABRIK)

algorithm. Inverse Kinematics, consists of searching possible and feasible joints motions to reach a desired position and

orientation as smoothly, rapidly and as accurately as possible. One of the current solutions used in computer graphics is the

FABRIK algorithm. FABRIK algorithm, reposition each joint one at a time in a forward and backward iterative mode.

However, the algorithm alone is not suitable for robot manipulators as it does not consider the joint direction of rotation

and orientation. In addition, this article described an Inverse Kinematics algorithm in Dual Quaternion form on the basis

of an existing FABRIK algorithm and compared with other heuristic methods. The proposed algorithm uses the advantages

of Dual Quaternion that fully defined the orientation and position in a single form with 8 components. Besides, the proposed

algorithm does not use any trigonometry function compared to other traditional methods. Finally, in this article, different

models were tested with the algorithm ranging from 2 DOF (Degree of freedom) to 6 DOF and the results are presented

here.

INTRODUCTION

Since the beginning of industrial revolution 4.0 in 2011, the emerging of industrial robots in different fields has

significantly increased in trend. Industrial robots have been used ranging from the aerospace industry in Curiosity

Rover, to the food industry in robot barista manufactured by CAFE X. This increasing trend makes it difficult to fulfill

the needs of the diverse industries as the industrial robot model and the movement required for each industry are

different. The control system for an industrial robot consists of a few components and one of the fundamentals is the

Inverse Kinematics.

Inverse Kinematics, consists of finding a possible and feasible joints motions solution for which the end effectors

move to the desired position as smoothly, rapidly and as accurately as possible. During the last decades, several

methods and techniques have been presented to solve the Inverse Kinematics problem in Dual Quaternion form, such

as Inverse Jacobian, Cyclic coordinate descent (CCD) and Geometrical approach (Paden-Kahan subproblems)

[1][2][3]. However, these methods involve high computational costs, are mathematically complicated and result in

unrealistic movement.

One of the current solutions to solve Inverse Kinematics problem in computer graphics is the Forward and

Backward Reach Inverse Kinematics (FABRIK) algorithm [4][5]. FABRIK algorithm, focuses on finding the joint

locations as a problem of finding a point on a line. The algorithm does not consider the direction of rotation and joint

orientation. Thus, the algorithm alone is not suitable for an industrial robot as robots use motor to control the joints.

To rotate the joints, one needs to know how much rotation is needed for each joint.

This article proposes to design a new Inverse Kinematics algorithm in Dual Quaternion form on the basis of an

existing FABRIK algorithm. This algorithm uses the advantages of Dual Quaternion that fully defined the orientation

and position in a single form. Moreover, Dual Quaternion form requires less calculation in chain transformation [6].

This paper will be constructed as follow. Firstly, to design the Inverse Kinematics algorithm in the Dual Quaternion

form. Next, to test different models with the algorithm ranging from 2 Degree of freedom (DOF) to 6 DOF. Finally,

to make it work in real-life situations with realistic movements. Constraints in the Dual Quaternion form will be

applied in order for this to be applicable.

SERIAL MANIPULATOR

Serial manipulator is the most common industrial robots, that consist of a chain of links connected by motor-

actuated joints that extend from the base to an end effector as in FIGURE 3. There are two common type of joints

used in manipulator, revolute joint and prismatic joint. This article focuses on revolute joint where the joint is rotated

in a single axis rotation.

MATHEMATICAL BACKGROUND

This section provides a brief introduction to Quaternion, Dual Quaternion, and the use of Dual Quaternion as rigid

body transformation. Some basic understanding of this are required to understand the proposed algorithm for solving

the inverse kinematics of robot manipulators. For more details about Quaternion and Dual Quaternion refer to [2][7].

The notation used for Quaternions and Dual Quaternion are explained in the next section. .

Definitions

To reduce ambiguity and make the article as readable as possible, the variable symbols are defined as follow

u
r

 - vector $q - Dual Quaternion

q - Quaternion $ n

bQ - Joint n relative to the reference frame b

In this article the letter represents either Quaternion or Quaternion component, and symbol " " represent Dual

Quaternion or Dual Quaternion component.

Quaternion

Quaternion is a hyper-complex number of rank 4, constituting of four-dimensional vector space over the field of

real numbers [7]. A Quaternion can be represented as

 ,s vq q q=

 (1)

Where
0sq q= is the scalar component and  1 2 3, ,vq q q q= is the vector component. A Quaternion can be

illustrated as a single rotation around an axis in a 3-dimensional space [6]. Rotation about a unit axis

, ,
T

x y zd d d d =   
 with an angle  can be expressed as

()
()
2

2

cos

*sin
q

d





 
 

=  
 
  (2)

Some basic operation of two Quaternions q and p , such as addition, subtraction and multiplication can be

expressed as follow

s s

v v

T

s s v v

s v s v v v

q p
q p

q p

q p q p
q p

q p p q q p

   =  
  

 −  =  
 + +   (3)

Where “” and “ ” denotes Quaternion product and cross product respectively. Lastly, the inverse of Quaternion

[9] or Quaternion conjugate is defined as

 * ,s vq q q= −

 (4)

Quaternion with 0vq = , is known as a real Quaternion, and a Quaternion with 0sq = , is called as a pure

Quaternion (or vector Quaternion) [10]. Quaternion are non-commutative and a unit Quaternion has a unit length of
2 2 2 2

0 1 2 3 1q q q q+ + + = .

One of the advantages of using Quaternion for chain rotation is the number of operations required is less compared

to the traditional rotation matrix [7]. Moreover, Quaternion can be used to represent a rotation that resulted from two

vectors, vector u to vector v as

 ,q u v u v = •   

r r r r
 (5)

Dual Quaternion

Dual Quaternion is a combination of dual-number theory introduced by Clifford with Quaternion components [9].

Dual Quaternion has the ability to represent 3 dimension Euclidean coordinate space (i.e. rotation and translation) in

a single form with 8 components as

$  ,r d r dq q q q q= = +
 (6)

Where
rq and

dq represent dual scalar and dual vector respectively and both are Quaternions,  is the dual-factor.

Common operation of two Dual Quaternion such as, addition, subtraction and multiplication is defined as follow

$ $

$ $ ()

r r

d d

r r

r r r d d r

r d d r

q p
q p

q p

q p
q p q p q p q p

q p q p


   =  
  

  = =  +  +  
 +   

e
 (7)

Where “” and “ e ” denote Quaternion and Dual Quaternion product respectively. Finally, the conjugate of a Dual

Quaternion is represented as

$ ()

* *** *, r dr d
q q qq q  = = +   (8)

By equating the dual part to zero, Dual Quaternion can represent a pure rotation similar to a Quaternion [7] as

 $    0 1 2 3 0 0 0 0,0
T

rq q q q qq= = (9)

A Dual Quaternion can represent a pure translation with no rotation as

$  1 , 1 0 0 0 0
2 2 2

T

yx z
d

tt t
q q

 
 = =  
   (10)

Dual Quaternion Rigid Transformation

Unit Dual Quaternion can be used to represent a rigid transformation including translation and rotation. There are

two common forms used to represent the transformation between two frames [3]. Firstly, Dual Quaternion that is

obtained from a rotation of q then a translation of t as

 $ $ $()1

2
rot transq q q qqt

 
 = + = 
 

e (11)

Secondly, Dual Quaternion which is the result of a translation of t and then a rotation of q as

 $ $() $1

2
trans rotq q q qtq

 
 = + = 
 

e (12)

Where, $ [,0]rotq q= Dual Quaternion pure rotation, $
1

1,
2

transq t
 
 =  
  

 Dual Quaternion pure translation, q is the

unit Quaternion that describe the rotation and 0,t t =   

r
is the Quaternion that describe the translation represented

by the vector t
r

. In this article, rigid transformation will be represented by equation (12).

MANIPULATOR KINEMATICS

Forward Kinematic

Forward kinematics is the process of calculating the orientation and position of the manipulator joint relative to

the reference frame [8]. The forward kinematics equations for the n series chain of a manipulator robot can be formed

in a Dual Quaternion form as

$ $ $ $ $

0 0 1 2

n

nQ q q q q= L
 (13)

Where $ $
1 1nq q

−
K defines each revolute joint rotation and translation in the joint frame. $

0q is the joint reference frame

and $
nq is the joint end effector, where n it the total number of joints. Each joint rotation and translation in the joint

frame can be represented using equation (12) as

$ 1

2
i i iiq q t q= +

 (14)

Where the Quaternion that describes the rotation is represented as

cos sin
2 2

T

i i
i iq d

     
    =        
      (15)

id is the direction of rotation, using right-handed coordinate system. Meanwhile the Quaternion that describe the

translation can be interpreted as follow

*

1

2

2

i

i

d i i

i d i

q t q

t q q

=

=
 (16)

Where
it is a vector Quaternion defining the distance between joint i and 1i − for 1,i n= K .

Inverse Kinematics

Inverse Kinematics is the opposite of Forward Kinematics. Inverse Kinematics consists of searching for the

geometry parameters necessary to reach a given position and orientation [9]. There are a few methods and techniques

that have been presented to solve the Inverse kinematics problem in a pure Dual Quaternion. The most common

approach is the Paden-Kahan subproblems and Cyclic coordinate descent (CCD). However, these methods involve

high computational costs, are mathematically complicated and result in unrealistic movement. This article aims to

design an alternative solution for Inverse Kinematics problems in Dual Quaternion form based on Forward and

Backward Reaching Inverse Kinematics (FABRIK) algorithm.

FABRIK

Forward and Backward Reaching Inverse Kinematics (FABRIK) algorithm is a heuristic method design by

Andreas Aristidou and Joan Lasenby. Although, FABRIK algorithm is a relatively new solution, it has gain traction

notably in the computer graphics industry. This algorithm has a low computational cost and produces visually realistic

poses [4]. FABRIK algorithm finds the joints location by searching for a point on a line and minimizing the system

error by adjusting each joint position one at a time in a forward and backward iterative mode. The algorithm can be

split into two main stages, Forward Reaching and Backward Reaching.

Forward Reaching stage relocate joint position starting from the end effector and finish at the first joint. During

the beginning of the first stage, the end effector is repositioned on the target as in FIGURE 1 (b). Then, the joints are

repositioned starting from the joint 1n − until the first joint. As an example, to find the new position of the joint

1n − , the joint should lie on the line that passes through the new joint n and joint 1n − , with a distance of l as

shown in FIGURE 1 (c). This process is repeated until the first joint.

Meanwhile, the second stage Backward Reaching reposition the joint starting from the first joint to the end effector.

First of all the first joint is repositioned back to its original position as the first joint position is fixed to the base. Next,

the joints are repositioned starting from the second joint to the n joint, the end effector. The second stage ends when

all joints position are updated. At this stage, the end effector should be closer to the target. These two stages are

repeated until the end effector is as close as possible to the target or on the target.

FABRIK algorithm avoids the uses of rotational angles or matrices and uses only the joint position information.

As a result, the joint direction of rotation and orientation were not considered in the algorithm. Thus, this leads to

some minor drawbacks. Firstly, the algorithm is difficult to be implemented in a system with multiple directions of

rotation. Secondly, it is not that easy to apply a joint rotational limit as it required an additional task to derive the joint

orientation from their position. Lastly, there is no general solution to apply orientation control with the position

information.

𝑄01

𝑄02 𝑄03

𝑄04

t

𝑙1

𝑙2

𝑙3

𝑄01

𝑄02 𝑄03

𝑄04

t

𝑙1

𝑙2

𝑙3

(a) (b)

(c) (d)

(e) (f)

FIGURE 1. Example of FABRIK full iteration on SCARA manipulator. (a) The initial position of the manipulator and target,

(b) begin the Forward reaching by reposition the end effector on target, (c) find new joint k position on the line, (d) complete

iteration of Forward reaching, (e) begin the Backward reaching by position the first joint back to the based, (d) full iteration on

backward reaching

DUAL QUATERNION FABRIK

This section explains the Inverse Kinematics algorithm for position control in the Dual Quaternion form. Dual

Quaternion was chosen as it required less number of operations compared to the traditional transformation matrix.

The new algorithm aims to provide a more general solution for manipulator robot inverse kinematics problem in Dual

Quaternion form. In addition, preserve the advantages of the FABRIK algorithm.

The proposed algorithm is divided into three main sections, pre iteration, main iteration and post iteration. There

are a few assumptions made in this algorithm. The first joint position and the distances between each joint is fixed.

Pre iterations

If the target position t and all joints initial position and orientation is given as in equation (10). Each joint rotation

and translation relative to the joint frame (i.e. joint configuration) can be derived as the difference between joint j

and 1j −

$ $() $*
1

00

jj

jq QQ
−

=
 (17)

for 1,j n= K . Where $ $0

0 0Q q= is the fixed reference frame. Next, find the first line vector
ju . The first line vector

passes through joint j and 1j − as shown in FIGURE 2 (a). Line vector
ju can be derived from the Dual Quaternion

translation part of Equation (17) as

𝑄01

𝑄02 𝑄03

𝑄04

𝑄03
′

𝑄04
′

𝑙1

𝑙2

𝑙3

𝑄04
′

𝑙2

𝑙3

𝑙1

𝑄03
′

𝑄01
′

𝑄02
′

𝑄01
′

𝑄01
′′

𝑙1
𝑙2

𝑙3

𝑄02
′

𝑄03
′

𝑄04
′

𝑙1

𝑙2

𝑙3 𝑄01
′′

𝑄02
′′

𝑄03

′′

𝑄04
′′

 t

()

()

*

*

2

2

j j

j j

d r

j

d r

q q
u

q q

=

 (18)

In case the robot manipulator has more than one direction of rotation, the line vector
ju should be mapped relative to

their plane as

 ()0
j j

T
T

j v vu u u d d
 

= −   
 (19)

Where d is the joint direction of rotation.

Main Iteration

The main iteration is divided into two stages Forward reaching and Backward reaching, as in traditional FABRIK.

Forward Reaching (Stage 1)

At the outset, based on the assumption that was made, the first joint is set as the base b

$1

0b Q=$
 (20)

The end effector, joint n is repositioned to the target t.

 $ $
0 0

n t

Q Q= (21)

 Then, to find the new position and orientation of joint k , for 1, 1k n= − K , second line vector kv is required. The

line vector kv passes through joint k and new joint 1k + as shown in FIGURE 2 (a). The line vector can be found

as

$() $()
*

1

0 0

*

*

2

2

k k

k k

k k
k

d r

k

d r

r Q Q

r r
v

r r

+ 
=

=

$

 (22)

Should be noted that the line vector kv are in vector Quaternion form. In case there are more than one direction of

rotation, the line vector kv must be focused relative to their plane as

 ()0
k k

T
T

k v vv v v d d
 

= −  
 (23)

Dual Quaternion pure rotation $ k , that reorient the joint k to the direction of joint 1k + can be formulated using

equation (5) with the line vectors kv and 1ku + as

$   1 ,01 0 0 0
T

k
k ku v
+

 = −   (24)

During the first stage, all joints were assumed rotatable including the end effector. Based on that assumption, the new

joint 1k + can be defined as

$() $() $() $

1

0 0 1

k k

kkQ Q q 
+

+

 
= (25)

Where $ k is the rotation on the joint 1k + as shown in FIGURE 2 (b) and is defined as

$ $() () $() $()

** 1*

1 0 0

k k

k rot k rot rotk
q Q Q 

+

+


= (26)

From equation (25), new joint k can be represented as

$() $() $() $()

* *1

0 0 1

k k

k kQ Q q
+

+

 
= (27)

This process is repeated for all joints. The first stage finished when the first joint position and orientation are

updated as in FIGURE 2 (d).

(a) (b)

(c) (d)

FIGURE 2. Example of Stage 1 Dual Quaternion FABRIK. (a) reposition the new end effector on the target, (b) find the

rotation difference and the Dual Quaternion pure rotation to reorient joint k, (c) Reposition joint k on the line (d) Complete

iteration of the first stage

Backward Reaching (Stage 2)

First of all, during the second stage the first joint is repositioned back to it initial position as

$()
4

0rot
new

Q$()
4

0
new

Q

$ 4

0Q

$ 3

0Q$ 2

0Q

$1

0Q

1l

2l

3u

3v

$3

0rotQ

$()
4

0rot
new

Q

$3

0rotQ 



$()
4

0
new

Q

$ 4

0Q

$ 3

0Q$ 2

0Q

$1

0Q

1l

2l

$()
4

0rot
new

Q

$()
3

0rot
new

Q

$()
4

0
new

Q

$ 4

0Q

$ 3

0Q$ 2

0Q

$1

0Q

1l

2l

$()
3

0
new

Q

𝑄04
′

𝑙2

𝑙3

𝑙1

𝑄03
′

𝑄01
′

𝑄02
′

$()

1

0
Q b


= (28)

Then to find the new position and orientation of joint 1k + for 1, 1k n= −K , the process in stage 1 is repeated

from equation (22) to (24). From the Dual Quaternion pure rotation $
k in equation (24), the rotation on joint

configuration k and line vector ku can be updated as follow

$() $ $

()

()

*

*

2

2

k

k

kk k

d k

k

d k

q q

q q
u

q q



=

=

 (29)

Next, the orientation of joint k can be updated as

$() $() $

0 0

k k

kQ Q 
 
= (30)

Finally, the joint 1k + is repositioned as

$() $() $1

0 0

k k

kQ Q q
+  

= (31)

This process is repeated for all joints. The second stage is finished when the position and orientation of joint n are

updated.

Post iteration

When all joints have been updated, the position difference between the new end effector and the target can be

calculated. The new position of the end effector should be closer to the target. If their difference is more than the error

tolerance the main iteration is repeated, otherwise the algorithm is terminated.

Algorithm 1: A full iteration of the Dual Quaternion FABRIK algorithm.

Input : The joint initial positions and orientation $

0

i

Q , for 0,i n= K relative to the fixed reference

frame and the target position in Dual Quaternion form $
0

t

Q .

 Output : The new joint position and orientation $
0

j

Q and new joint configuration $
jq for 1,j n= K .

1.1 % Find each joint configuration and first line vector.

1.2 for 1,j n= K do

1.3 $ ()
*

1
00

jj
jq QQ −=

1.4
** 22

jj j
dj rj d r

q qu q q=

1.5 % In case there are more than one direction of rotation.

1.6 ()0
j j

T
T

j v vu u u d d
 

= −   

1.7 end

1.8 % Set error tolerance.

1.9 0.01tol =

1.10 % Calculate the difference between the initial end effector and the target.

1.11 $() $
*

0 0

t n

e Q Q=$

1.12 % Calculate the position difference.

1.13 ()
*

2 d rerror e e=

1.14 while error tol do

1.15 % STAGE 1

1.16 % Set the first joint as the base b$.

1.17 $1

0b Q=$

1.18 % Set end effector joint as the target.

1.19 $ $
0 0

n t

Q Q=

1.20 for 1, 1k n= − K do

1.21 % Find the difference between joint k and 1k + .

1.22 $() $* 1

00

kk
kr QQ

+

=$

1.23 % Convert the Dual Quaternion difference into vector Quaternion and normalize.

1.24
* *2 2

k k k kk d r d rv r r r r=

1.25 % In case there are more than one direction of rotation.

1.26 ()0
k k

T
T

k v vv v v d d
 

= −  

1.27 % Find the Dual Quaternion rotation.

1.28 $   1 ,01 0 0 0
T

k
k ku v
+

 = −  

1.29 % Find the Dual Quaternion rotation of joint 1k + .

1.30 $ $() $() $() $
** * 1

1 0 0

k k

kk rot rot rotk
q Q Q 

+

+
=

1.31 % Find the new joint k .

1.32 $ $ $() $()
* *1

0 0 1

k k

k kQ Q q
+

+
=

1.33 end

1.34 % STAGE 2

1.35 % Set the first joint to its initial position.

1.36 $1

0Q b=

1.37 for 1, 1k n= −K do

1.38 % Find the difference between joint k and 1k + .

1.39 $() $* 1

00

kk
kr QQ

+

=$

1.40 % Convert the Dual Quaternion difference into vector Quaternion and normalize.

1.41
* *2 2

k k k kk d r d rv r r r r=

1.42 % In case there are more than one direction of rotation.

1.43 ()0
k k

T
T

k v vv v v d d
 

= −  

1.44 % Find the Dual Quaternion rotation.

1.45 $   1 ,01 0 0 0
T

k
k ku v
+

 = −  

1.46 % Update the rotation for joint configuration k .

1.47 $ $ $
kk kq q =

1.48 % Update joint k .

1.49 $ $ $
0 0

k k

kQ Q =

1.50 % Find new joint 1k + .

1.51 $ $ $1

0 0 1

k k

kQ Q q
+

+=

1.52 end

1.53 % Calculate the difference between the new end effector and target.

1.54 $() $
*

0 0

t n

e Q Q=$

1.55 % Calculate the position error.

1.56 ()
*

2 d rerror e e=

1.57 end

Joint limit

Joint limit is the rotation limit on each joint configuration as the human knee or elbow. This limitation may occur

due to the manipulator design or the limitation in the electric motor used. To ensure the joint configuration does not

exceed the rotational limit, the algorithm is applied in both stages.

Joint Limit on Stage 1

Since the first stage starts from the joint n , the joint configuration 1k + must be ensured rotated within their limit.

Therefor, joint k will be repositioned, for 1, 1k n= − K . In this article, if the joint configuration exceeds the limit,

the joint configuration is set to their maximum or minimum limit. In the first stage, the rotation of joint configuration

1k + can be calculated by finding the rotation difference between joint k and new joint 1k + as

 $ $() $()
* 1

1 0 0

k k

rot rot rotk
q Q Q

+

+
= (32)

In case the rotation on joint configuration 1k + exceed their limit, joint k will be repositioned as follow

$ $() $() $ $() $

$ $ $() $()

* ** * 1

1
1 1 0 0

* *1

0 0 1

lim
k k

kk rot rot rot rotk k

k k

k k

q q Q Q

Q Q q





+

+
+ +

+

+

 
 =  
 

=
 (33)

Where $ 1limk+ is the joint configuration 1k + rotation limit in pure Dual Quaternion rotation.

Joint Limit on Stage 2

During the second stage, the joint 1k + is repositioned so that the rotation on joint configuration k does not

exceed their limit. After the joint configuration k is updated as in equation (29), the rotation can be checked. In case

the rotation exceeds their limit, the rotation on joint configuration k can be set on the maximum or minimum rotation

limit.

Orientation control

In the previous section, the basic concept of the proposed algorithm is presented. This section explains the

orientation control algorithm in Dual Quaternion form. The orientation control uses the swing and twist approach. In

this algorithm, joint 1n − is assumed responsible for the orientation control and end effector joint n are fixed. Should

be noted, that the orientation control algorithm is applied separately from the position control algorithm. First of all,

the target orientation can be defined as

 $ $ $() $() $() $()
* *1 1 1

0 0 00 00

t n n t n n

img rot rotQ Q Q Q Q Q
− − −

= (34)

In case the joint 1n − and joint n located in the same position, an imaginary distance should be applied. Joint j

, which is responsible for the orientation control can be rotated so that the end effector is pointed in the same direction

as the target. Using equation (17), (18) and (19) the first line vector from joint j to the current end effector can be

found as follow

$ $() $

()

()

*

00

*

*

2

2

nj

d r

d r

p QQ

p p
u

p p

=

=

 (35)

The second line vector, from joint j to the target orientation can be defined as follow

$() $

()

()

*

00

*

*

2

2

tj

img

d r

d r

r QQ

r r
v

r r

=

=

$

 (36)

It should be noted, that both of the line vector must be mapped on their plane as in equation (5). The Dual Quaternion

pure rotation can be found using equation (24). Finally, the joint configuration j can be rotated as

$ $
j jq q =

 (37)

Rotation around it own axis

In some case the joint only rotate around it own axis (i.e. twist). This case occurs when 0u = . In this

situation, the Dual Quaternion pure rotation can be defined as the orientation difference between the joint j and target.

$ $() $
*

0 0

j t

rot rotQ Q =
 (38)

Algorithm 2: A full iteration of the orientation control in Dual Quaternion form.

Input : The joint that responsible for orientation control $

0

j

Q , the joint configuration $
jq , the current

end effector $
0

n

Q , the joint $
1

0

n

Q
−

 and the target position $
0

t

Q .

 Output : The new joint configuration $
jq .

2.0 % Find the difference between the last two joints and check their distance.

2.1 $ $() $()
*1

0 0

n n

k Q Q
−

=

2.2 2 d rd k k=

2.3 if 0d =

2.4 $  1 0 0 0 0 0.5 0 0
T

k =

2.5 end

2.6 % Find the target orientation direction.

2.7 $ $ $() $ $
*1 1

0 0 00

t n n t

img rot rotQ Q Q Q k
− −

=

2.8 % Find the first line vector.

2.9 $ $() $
*

0 0

j n

p Q Q=

2.10 () ()
* *

2 2d r d ru p p p p=

2.11 % Map the line vector on the plane.

2.12 ()0
T

T

v vu u u d d = −  

2.13 if 0u =

2.14 $ $() $
*

0 0

j t

rot rotQ Q =

2.15 else

2.16 % Find the second line vector.

2.17 $() $
*

0 0

j t

imgr Q Q=$

2.18 () ()
* *

2 2d r d rv r r r r=

2.19 % Map the line vector on the plane.

2.20 ()0
T

T

v vv v v d d = −  

2.21 % Find the Dual Quaternion pure rotation.

2.22 $   ,01 0 0 0
T

uv  = −  

2.23 end

2.24 $ $ $
j jq q =

MULTIPLE DIRECTION OF ROTATION

This section, explain how to apply the proposed algorithm for a manipulator with multiple directions of rotation.

It should be noted, for a manipulator with multiple directions of rotation, each joint should only rotate with respect to

its direction of rotation while moving the end-effector position and orientation closer to the target. To apply the

algorithm in multiple direction of rotation, the following step are applied.

1. Define each joint direction of rotation.

2. Define the joint responsible for position control.

3. Define the joint responsible for orientation control.

4. Group the position control joint based on their direction of rotation.

5. Run the position control algorithm for all the direction of rotation from Step 4.

6. Run the orientation control for the joint defined in Step 2.

7. Check for system error.

8. If the error is greater than the stated acceptable tolerance, repeat step 5 through 7. Otherwise, the process end.

To explain further step 1 to 4, PUMA and KUKA manipulator with 6 degree of freedom as in FIGURE 3 is used.

The first three joints (i.e. joint 1,2 and 3) are responsible for the position control and the last three joints (i.e. joint 4,5

and 6) are responsible for the orientation control. For position control, the joints are divided into two groups. The first

group, is for joint 1 that is rotated on the z-axis. The second group is for joint 2 and joint 3 which is rotated on the y-

axis.

(a) (b)

FIGURE 3. Most used type of manipulator model. (a) PUMA manipulator, (b) KUKA manipulator

EXPERIMENTAL RESULTS

A target database consisting of 7200 points has been created for the validation and testing of the proposed Inverse

Kinematics algorithm. The database consists of only reachable targets and targets with different distances from the

end effectors for model in FIGURE 1. The error tolerance for these experiments were set to be less than 0.01.

This article compares the proposed algorithm with Dual Quaternion Cyclic Coordinate Descent (CCD) algorithm.

They were compared with respect to their processing time, computational cost, number of iterations needed to reach

the target and the error convergence. The runtimes were recorded in milliseconds and were measured with custom

MATLAB code on an Intel Core i5 2.5 GHz. No optimizations were used for both methods reported in TABLE 1.

The Dual Quaternion FABRIK algorithm requires on average 7 iterations with 62.16 milliseconds to reach the

target. However, Dual Quaternion CCD requires in average 12 iterations with 66.03 milliseconds. FIGURE 4 is an

example of one of the errors plotted against the number of iterations for both methods. The proposed algorithm error

converges at a faster rate compared to the Dual Quaternion CCD. In the beginning the error converges accelerated

then gradually decelerate as it reaches the target.

One of the advantages that has been observed from the experiment is that, the proposed algorithm produces better

movement in each iteration as shown in FIGURE 5 (a). Dual Quaternion CCD tend to produce an excessive movement

at the beginning before converging to the target as in FIGURE 5 (b). Although, when the target is closer to the base

the proposed algorithm has been observed to require a higher number of iterations. The reason for this behavior is not

analyzed in this article.

TABLE 1. To format a table caption, use the Microsoft Word template style: Table Caption. The text

 Number of Iteration Matlab exe. Time (ms) Time Per Iteration (ms)

DQ FABRIK
6.94850 62.16 8.685

DQ CCD
11.66467 66.03 5.3075

FIGURE 4. Number of iteration against the position error

(a) (b)

FIGURE 5. An example of the poses for both Dual Quaternion algorithm in each iteration. (a) Dual Quaternion FABRIK

result, (b) Dual Quaternion CCD result

Number of iterations

P
o

si
ti

o
n
 e

rr
o

r

x-axis

y
-a

x
is

y
-a

x
is

x-axis

Moreover, the experiment tested both algorithms to move along a continues point on a circle. The end effector

trajectory for both algorithms are plotted in FIGURE 6. From the results in FIGURE 6 (a) and (b), it can be concluded

that when the distances between the points are closer to each other, both methods perform equally well. However,

when the distances between the points are further apart the proposed algorithm perform better than Dual Quaternion

CCD.

(a) (b)

(c) (d)

FIGURE 6. Example of the end effector trajectory for both algorithms following a continuous point. (a) Dual Quaternion

FABRIK end effector trajectory with points 10 degree apart, (b) Dual Quaternion CCD end effector trajectory with points 10

degree apart, (c) Dual Quaternion FABRIK end effector trajectory with points 30 degree apart, (d) Dual Quaternion CCD end

effector trajectory with points 30 degree apart.

This article test the proposed algorithm with different type of manipulator model such as KUKA and PUMA

manipulators as shown in FIGURE 3. FIGURE 7 (a) represents a KUKA manipulator with z-axis rotation on joint 5.

FIGURE 7 (c) represent KUKA manipulator with y-axis rotation on joint 5. While FIGURE 7 (e) represent the PUMA

manipulator. Based on the result, the final position and orientation of the manipulator produces the same poses.

However, each manipulator model requires a different number of iterations to reach the target’s position and

orientation, depending on their configuration. As in FIGURE 7 (d) the number of iterations were the highest. The

orientation control joint 5, rotate on the y-axis. However, our target orientation is on the z-axis on the 90 degrees. In

this experiment, it is obvious that the orientation control causes the manipulator to require a higher number of

iterations. If the orientation control is ignored all manipulator models will reach the target at a faster rate with similar

results. In conclusion from this experiment, the Dual Quaternion Inverse Kinematics algorithm based on FABRIK

methodology has proven to work for all models. There are definitely some room for improvement on the orientation

control.

x-axis

y
-a

x
is

x-axis

y
-a

x
is

x-axis

y
-a

x
is

x-axis

y
-a

x
is

(a) (b)

(c) (d)

(e) (f)

FIGURE 7. Example of the result poses for Dual Quaternion FABRIK algorithm with different manipulator models. (a)

KUKA manipulator with joint 5 rotate on z-axis, (b) Number of iterations against orientation and position error for KUKA

manipulator with joint 5 rotate on z-axis (c) KUKA manipulator with joint 5 rotate on y-axis, (d) Number of iterations against

orientation and position error for KUKA manipulator with joint 5 rotate on y-axis, (e) PUMA manipulator, (f) Number of

iterations against orientation and position error for PUMA manipulator.

T
o

ta
l

er
ro

r

Number of iterations

Number of iterations

T
o

ta
l

er
ro

r

Number of iterations

T
o

ta
l

er
ro

r

CONCLUSION AND FUTURE WORK

This article described an alternative solution to solve inverse kinematics problems in the Dual Quaternion Form.

Based on the results from the experiment, the proposed algorithm on average required less number of iterations

compared to Dual Quaternion CCD. Moreover, with the concept of updating the joint in a forward and backward

iteration mode, the proposed algorithm provided smooth poses in each iteration and does not cause any excessive

movement. This approach caused the algorithm to accelerate at the beginning and gradually decelerate when as it

reached the target.

Furthermore, the same algorithm has been proven to be applicable to different model of manipulators. This

algorithm required minimal changes in their directions of rotation. This is because the proposed algorithm considered

the direction of rotation in their iteration process. Besides, no additional task is required to be applied to the joint’s

limit algorithm as the joint rotation information is available at all time.

However, during the experiment, it is observed that the number of iterations increases significantly as the target

approaches the base. In the future, it is suggested to test the algorithm with coefficient on the joint rotation. In addition,

the orientation control algorithm was designed as a separate algorithm. This causes more iterations as the error for

orientation and position move inconsistently. In some cases, the position error tends to converge faster than the

orientation error or vice versa. Because of this, in the future it is suggested to reformulate the orientation control

algorithm and combine it in the main position algorithm.

Moreover, during the experiment, it has been observed that the algorithm suffers from a minor singularity issues.

This is seen in traditional FABRIK and CCD [5]. To avoid these issues, it is best to find a solution to identify when

the singularity may occur during the iteration process. Lastly, it is suggested to design a solution that would be able

to check if the target orientation and position are reachable in Dual Quaternion form.

ACKNOWLEDGMENTS

The authors would like to thank the editors, reviewers and all the members of the Department of System Analysis

and Control for their support and insightful feedback that has contributed towards making this article more clear,

concise, and correct.

REFERENCES

1. E. Sariyildiz and H. Temeltas, Turkish Journal of Electrical Engineering and Computer Sciences 20, 607 (2012).

2. B. Kenwright, Journal of Graphics Tools 16, 177 (2012).

3. B. Kenwright, International Journal on Advances in Intelligent Systems 6, 53 (2013).

4. A. Aristidou and J. Lasenby, Graphical Models 73, 243 (2011).

5. A. Aristidou, Y. Chrysanthou, and J. Lasenby, Comp. Anim. Virtual Worlds 27, 35 (2016).

6. B. Kenwright, in 20th International Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision 2012, Plzen, 2012, edited by V. Skala (Union Agency, Plzen, 2012), pp. 1-10.

7. S. Akhramovich, V. Malyshev, and A. Starkov, All-Russian Scientific-Technical Journal “Polyot” (“Flight”) 4,

9 (2018).

8. E. Sariyildiz, E. Cakiray, and H. Temeltas, International Journal of Advanced Robotic Systems 8, 64 (2011).

9. L. Josuet, B. Carlos, L. Hsien-I, H. Te-Sheng, and W. Chun-Sheng, in 2016 International Automatic Control

Conference (CACS), Taichung, 2016 (IEEE, 2017), pp. 77–82.

10. R. Bai and Z. Liu, in 2017 International Automatic Control Conference (CACS), Pingtung, 2017 (IEEE, 2018),

pp. 1–6.

11. E. Sariyildiz and H. Temeltas, in 2009 International Conference on Mechatronics and Automation, Changchun,

2009 (IEEE, 2009), pp. 26–31.

12. E. Sariyildiz and H. Temeltas, in 2009 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Singapore, 2009 (IEEE, 2009), pp. 338–343.

13. L. Dorst and J. Lasenby, Guide to Geometric Algebra in Practice (Springer Science & Business Media, 2011),

pp. 47–62.

14. A. V. Salazar, “Dynamic modeling and control of spacecraft robotic systems using dual quaternion,” Ph.D.

thesis, Georgia Institute of Technology, 2018.

15. R. Mukundan, International Journal of Computer Applications in Technology 34, 303 (2009).

16. E. Özgür and Y. Mezouar, Robotics and Autonomous Systems 77, 66 (2016).

17. M. Gouasmi, M. Ouali, and F. Brahim, International Journal of Robotics and Automation (IJRA) 1, 13 (2012).

18. M. Rodelo, J.L. Villa, J. Duque, and E. Yime, in 2018 IEEE 2nd Colombian Conference on Robotics and

Automation (CCRA), Barranquilla, 2018 (IEEE, 2018), pp. 1–6.

19. J. Chen, D. Han, H. Nie, and M. Cheng, Journal of Vibroengineering 16, 2813 (2014).

20. L. Guillaume, L. Philippe, and B. Gunnar, Frontiers in Behavioral Neuroscience 7, 7 (2013).

21. Q. Chen, S. Zhu, and X. Zhang, International Journal of Advanced Robotic Systems 12, 140 (2015).

22. I. Mas and C. Kitts, J Intell Robot Syst 87, 643 (2017).

23. S. Payandeh and A.A. Goldenberg, Journal of Robotic Systems 4, 771 (1987).

