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Abstract. This article examines a formulation method to solve the Inverse Kinematics problem of serial robot manipulators 

in Dual Quaternion form. The formulation is based on Forward and Backward Reaching Inverse Kinematics (FABRIK) 

algorithm. Inverse Kinematics, consists of searching possible and feasible joints motions to reach a desired position and 

orientation as smoothly, rapidly and as accurately as possible. One of the current solutions used in computer graphics is the 

FABRIK algorithm. FABRIK algorithm, reposition each joint one at a time in a forward and backward iterative mode. 

However, the algorithm alone is not suitable for robot manipulators as it does not consider the joint direction of rotation 

and orientation. In addition, this article described an Inverse Kinematics algorithm in Dual Quaternion form on the basis 

of an existing FABRIK algorithm and compared with other heuristic methods. The proposed algorithm uses the advantages 

of Dual Quaternion that fully defined the orientation and position in a single form with 8 components. Besides, the proposed 

algorithm does not use any trigonometry function compared to other traditional methods. Finally, in this article, different 

models were tested with the algorithm ranging from 2 DOF (Degree of freedom) to 6 DOF and the results are presented 

here. 

INTRODUCTION 

Since the beginning of industrial revolution 4.0 in 2011, the emerging of industrial robots in different fields has 

significantly increased in trend. Industrial robots have been used ranging from the aerospace industry in Curiosity 

Rover, to the food industry in robot barista manufactured by CAFE X. This increasing trend makes it difficult to fulfill 

the needs of the diverse industries as the industrial robot model and the movement required for each industry are 

different. The control system for an industrial robot consists of a few components and one of the fundamentals is the 

Inverse Kinematics. 

Inverse Kinematics, consists of finding a possible and feasible joints motions solution for which the end effectors 

move to the desired position as smoothly, rapidly and as accurately as possible. During the last decades, several 

methods and techniques have been presented to solve the Inverse Kinematics problem in Dual Quaternion form, such 

as Inverse Jacobian, Cyclic coordinate descent (CCD) and Geometrical approach (Paden-Kahan subproblems) 

[1][2][3]. However, these methods involve high computational costs, are mathematically complicated and result in 

unrealistic movement.  

One of the current solutions to solve Inverse Kinematics problem in computer graphics is the Forward and 

Backward Reach Inverse Kinematics (FABRIK) algorithm [4][5]. FABRIK algorithm, focuses on finding the joint 

locations as a problem of finding a point on a line. The algorithm does not consider the direction of rotation and joint 

orientation. Thus, the algorithm alone is not suitable for an industrial robot as robots use motor to control the joints. 

To rotate the joints, one needs to know how much rotation is needed for each joint.  



This article proposes to design a new Inverse Kinematics algorithm in Dual Quaternion form on the basis of an 

existing FABRIK algorithm. This algorithm uses the advantages of Dual Quaternion that fully defined the orientation 

and position in a single form. Moreover, Dual Quaternion form requires less calculation in chain transformation [6]. 

This paper will be constructed as follow. Firstly, to design the Inverse Kinematics algorithm in the Dual Quaternion 

form. Next, to test different models with the algorithm ranging from 2 Degree of freedom (DOF) to 6 DOF. Finally, 

to make it work in real-life situations with realistic movements. Constraints in the Dual Quaternion form will be 

applied in order for this to be applicable.  

SERIAL MANIPULATOR 

Serial manipulator is the most common industrial robots, that consist of a chain of links connected by motor-

actuated joints that extend from the base to an end effector as in FIGURE 3. There are two common type of joints 

used in manipulator, revolute joint and prismatic joint. This article focuses on revolute joint where the joint is rotated 

in a single axis rotation.  

MATHEMATICAL BACKGROUND 

This section provides a brief introduction to Quaternion, Dual Quaternion, and the use of Dual Quaternion as rigid 

body transformation. Some basic understanding of this are required to understand the proposed algorithm for solving 

the inverse kinematics of robot manipulators. For more details about Quaternion and Dual Quaternion refer to [2][7]. 

The notation used for Quaternions and Dual Quaternion are explained in the next section. . 

Definitions 

To reduce ambiguity and make the article as readable as possible, the variable symbols are defined as follow 

 

u
r

 - vector $q  - Dual Quaternion 

q  - Quaternion $ n

bQ  - Joint n  relative to the reference frame b  

 

In this article the letter represents either Quaternion or Quaternion component, and symbol " "  represent Dual 

Quaternion or Dual Quaternion component.  

Quaternion 

Quaternion is a hyper-complex number of rank 4, constituting of four-dimensional vector space over the field of 

real numbers [7]. A Quaternion can be represented as 

 

 
 ,s vq q q=

 (1) 

Where 
0sq q= is the scalar component and  1 2 3, ,vq q q q=  is the vector component. A Quaternion can be 

illustrated as a single rotation around an axis in a 3-dimensional space [6]. Rotation about a unit axis 
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Some basic operation of two Quaternions q and p , such as addition, subtraction and multiplication can be 

expressed as follow 
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Where “” and “ ” denotes Quaternion product and cross product respectively. Lastly, the inverse of Quaternion 

[9] or Quaternion conjugate is defined as 

 

 
 * ,s vq q q= −

 (4) 

Quaternion with 0vq = , is known as a real Quaternion, and a Quaternion with 0sq = , is called as a pure 

Quaternion (or vector Quaternion) [10]. Quaternion are non-commutative and a unit Quaternion has a unit length of 
2 2 2 2

0 1 2 3 1q q q q+ + + = . 

One of the advantages of using Quaternion for chain rotation is the number of operations required is less compared 

to the traditional rotation matrix [7]. Moreover, Quaternion can be used to represent a rotation that resulted from two 

vectors, vector u  to vector v  as   

 

 ,q u v u v = •   

r r r r
 (5) 

Dual Quaternion  

Dual Quaternion is a combination of dual-number theory introduced by Clifford with Quaternion components [9]. 

Dual Quaternion has the ability to represent 3 dimension Euclidean coordinate space (i.e. rotation and translation) in 

a single form with 8 components as  
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Where 
rq and 

dq  represent dual scalar and dual vector respectively and both are Quaternions,  is the dual-factor. 

Common operation of two Dual Quaternion such as, addition, subtraction and multiplication is defined as follow 
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Where “” and “ e ” denote Quaternion and Dual Quaternion product respectively. Finally, the conjugate of a Dual 

Quaternion is represented as 
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By equating the dual part to zero, Dual Quaternion can represent a pure rotation similar to a Quaternion [7] as 
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A Dual Quaternion can represent a pure translation with no rotation as  
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Dual Quaternion Rigid Transformation 

Unit Dual Quaternion can be used to represent a rigid transformation including translation and rotation. There are 

two common forms used to represent the transformation between two frames [3]. Firstly, Dual Quaternion that is 

obtained from a rotation of q  then a translation of t  as 
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Secondly, Dual Quaternion which is the result of a translation of t  and then a rotation of q  as 
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Where, $ [ ,0]rotq q=  Dual Quaternion pure rotation, $
1

1,
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 Dual Quaternion pure translation, q  is the 

unit Quaternion that describe the rotation and 0,t t =   

r
is the Quaternion that describe the translation represented 

by the vector t
r

. In this article, rigid transformation will be represented by equation (12).  

MANIPULATOR KINEMATICS 

Forward Kinematic 

Forward kinematics is the process of calculating the orientation and position of the manipulator joint relative to 

the reference frame [8]. The forward kinematics equations for the n  series chain of a manipulator robot can be formed 

in a Dual Quaternion form as  
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Where $ $
1 1nq q

−
K  defines each revolute joint rotation and translation in the joint frame. $

0q  is the joint reference frame 

and $
nq  is the joint end effector, where n  it the total number of joints.  Each joint rotation and translation in the joint 

frame can be represented using equation (12) as 
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Where the Quaternion that describes the rotation is represented as  
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id  is the direction of rotation, using right-handed coordinate system. Meanwhile the Quaternion that describe the 

translation can be interpreted as follow 
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Where 
it  is a vector Quaternion defining the distance between joint i  and 1i −  for 1,i n= K   . 

Inverse Kinematics 

Inverse Kinematics is the opposite of Forward Kinematics. Inverse Kinematics consists of searching for the 

geometry parameters necessary to reach a given position and orientation [9]. There are a few methods and techniques 

that have been presented to solve the Inverse kinematics problem in a pure Dual Quaternion. The most common 

approach is the Paden-Kahan subproblems and Cyclic coordinate descent (CCD). However, these methods involve 

high computational costs, are mathematically complicated and result in unrealistic movement. This article aims to 

design an alternative solution for Inverse Kinematics problems in Dual Quaternion form based on Forward and 

Backward Reaching Inverse Kinematics (FABRIK) algorithm. 

FABRIK 

Forward and Backward Reaching Inverse Kinematics (FABRIK) algorithm is a heuristic method design by 

Andreas Aristidou and Joan Lasenby. Although, FABRIK algorithm is a relatively new solution, it has gain traction 

notably in the computer graphics industry. This algorithm has a low computational cost and produces visually realistic 

poses [4]. FABRIK algorithm finds the joints location by searching for a point on a line and minimizing the system 

error by adjusting each joint position one at a time in a forward and backward iterative mode. The algorithm can be 

split into two main stages, Forward Reaching and Backward Reaching. 

Forward Reaching stage relocate joint position starting from the end effector and finish at the first joint. During 

the beginning of the first stage, the end effector is repositioned on the target as in FIGURE 1 (b). Then, the joints are 

repositioned starting from the joint 1n −  until the first joint. As an example, to find the new position of the joint 

1n − , the joint should lie on the line that passes through the new joint n  and joint 1n − , with a distance of l  as 

shown in FIGURE 1 (c). This process is repeated until the first joint. 

Meanwhile, the second stage Backward Reaching reposition the joint starting from the first joint to the end effector. 

First of all the first joint is repositioned back to its original position as the first joint position is fixed to the base. Next, 

the joints are repositioned starting from the second joint to the n  joint, the end effector. The second stage ends when 

all joints position are updated. At this stage, the end effector should be closer to the target. These two stages are 

repeated until the end effector is as close as possible to the target or on the target.  

FABRIK algorithm avoids the uses of rotational angles or matrices and uses only the joint position information. 

As a result, the joint direction of rotation and orientation were not considered in the algorithm. Thus, this leads to 

some minor drawbacks. Firstly, the algorithm is difficult to be implemented in a system with multiple directions of 

rotation. Secondly, it is not that easy to apply a joint rotational limit as it required an additional task to derive the joint 

orientation from their position. Lastly, there is no general solution to apply orientation control with the position 

information.   
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FIGURE 1. Example of FABRIK full iteration on SCARA manipulator. (a) The initial position of the manipulator and target, 

(b) begin the Forward reaching by reposition the end effector on target, (c) find new joint k position on the line, (d) complete 

iteration of Forward reaching, (e) begin the Backward reaching by position the first joint back to the based, (d) full iteration on 

backward reaching 

 

DUAL QUATERNION FABRIK 

This section explains the Inverse Kinematics algorithm for position control in the Dual Quaternion form. Dual 

Quaternion was chosen as it required less number of operations compared to the traditional transformation matrix. 

The new algorithm aims to provide a more general solution for manipulator robot inverse kinematics problem in Dual 

Quaternion form. In addition, preserve the advantages of the FABRIK algorithm. 

The proposed algorithm is divided into three main sections, pre iteration, main iteration and post iteration. There 

are a few assumptions made in this algorithm. The first joint position and the distances between each joint is fixed. 

Pre iterations 

If the target position t  and all joints initial position and orientation is given as in equation (10). Each joint rotation 

and translation relative to the joint frame (i.e. joint configuration) can be derived as the difference between joint j  

and 1j −  
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for 1,j n= K . Where $ $0

0 0Q q= is the fixed reference frame. Next, find the first line vector 
ju . The first line vector 

passes through joint j  and 1j −  as shown in FIGURE 2 (a). Line vector 
ju  can be derived from the Dual Quaternion 

translation part of Equation (17) as 
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In case the robot manipulator has more than one direction of rotation, the line vector 
ju  should be mapped relative to 

their plane as 
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Where d  is the joint direction of rotation. 

Main Iteration 

The main iteration is divided into two stages Forward reaching and Backward reaching, as in traditional FABRIK.   

Forward Reaching (Stage 1) 

At the outset, based on the assumption that was made, the first joint is set as the base b  
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The end effector, joint n  is repositioned to the target t.  
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 Then, to find the new position and orientation of joint k , for 1, 1k n= − K , second line vector kv  is required. The 

line vector kv  passes through joint k  and new joint 1k +  as shown in FIGURE 2 (a). The line vector can be found 

as 
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Should be noted that the line vector kv  are in vector Quaternion form. In case there are more than one direction of 

rotation, the line vector kv  must be focused relative to their plane as 
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Dual Quaternion pure rotation $ k , that reorient the joint k  to the direction of joint 1k +  can be formulated using 

equation (5) with the line vectors kv  and 1ku +   as  
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During the first stage, all joints were assumed rotatable including the end effector. Based on that assumption, the new 

joint 1k +  can be defined as  
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Where $ k  is the rotation on the joint 1k +  as shown in FIGURE 2 (b) and is defined as  
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From equation (25), new joint k  can be represented as  
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This process is repeated for all joints. The first stage finished when the first joint position and orientation are 

updated as in FIGURE 2 (d). 
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FIGURE 2. Example of Stage 1 Dual Quaternion FABRIK. (a) reposition the new end effector on the target, (b) find the 

rotation difference and the Dual Quaternion pure rotation to reorient joint k, (c) Reposition joint k on the line (d) Complete 

iteration of the first stage 

 

Backward Reaching (Stage 2) 

First of all, during the second stage the first joint is repositioned back to it initial position as 
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Then to find the new position and orientation of joint 1k +  for 1, 1k n= −K , the process in stage 1 is repeated 

from equation (22) to (24). From the Dual Quaternion pure rotation $
k  in equation (24), the rotation on joint 

configuration k   and line vector ku  can be updated as follow 
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Next, the orientation of joint k  can be updated as 
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Finally, the joint 1k +  is repositioned as 
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This process is repeated for all joints. The second stage is finished when the position and orientation of joint n  are 

updated. 

Post iteration 

When all joints have been updated, the position difference between the new end effector and the target can be 

calculated. The new position of the end effector should be closer to the target. If their difference is more than the error 

tolerance the main iteration is repeated, otherwise the algorithm is terminated.  

 

Algorithm 1: A full iteration of the Dual Quaternion FABRIK algorithm. 

 
Input : The joint initial positions and orientation $

0

i

Q , for 0,i n= K  relative to the fixed reference 

frame and the target position in Dual Quaternion form $
0

t

Q . 

 Output : The new joint position and orientation $
0

j

Q  and new joint configuration $
jq  for 1,j n= K . 

1.1 % Find each joint configuration and first line vector. 

1.2 for 1,j n= K  do 
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1.5 % In case there are more than one direction of rotation. 
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1.7 end 

1.8 % Set error tolerance. 



1.9 0.01tol =  

1.10 % Calculate the difference between the initial end effector and the target. 

1.11 $( ) $
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0 0
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e Q Q=$  

1.12 % Calculate the position difference. 

1.13 ( )
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2 d rerror e e=  

1.14 while error tol  do 

1.15 % STAGE 1 

1.16 % Set the first joint as the base b$ . 

1.17 $1

0b Q=$
 

1.18 % Set end effector joint as the target.  

1.19 $ $
0 0

n t

Q Q=  

1.20 for 1, 1k n= − K  do 

1.21 % Find the difference between joint k  and 1k + . 
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1.23 % Convert the Dual Quaternion difference into vector Quaternion and normalize. 

1.24 
* *2 2
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1.25 % In case there are more than one direction of rotation. 
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1.27 % Find the Dual Quaternion rotation. 

1.28 $   1 ,01 0 0 0
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1.29 % Find the Dual Quaternion rotation of joint 1k + . 
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1.33 end 

1.34 % STAGE 2 

1.35 % Set the first joint to its initial position. 

1.36 $1
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1.37 for 1, 1k n= −K  do 

1.38 % Find the difference between joint k  and 1k + . 
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1.40 % Convert the Dual Quaternion difference into vector Quaternion and normalize. 
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1.42 % In case there are more than one direction of rotation. 
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1.44 % Find the Dual Quaternion rotation. 
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1.46 % Update the rotation for joint configuration k . 

1.47 $ $ $
kk kq q =  

1.48 % Update joint k . 
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1.50 % Find new joint 1k + . 
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1.52 end 

1.53 % Calculate the difference between the new end effector and target. 
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1.55 % Calculate the position error. 
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2 d rerror e e=  

1.57 end 

 

Joint limit 

Joint limit is the rotation limit on each joint configuration as the human knee or elbow. This limitation may occur 

due to the manipulator design or the limitation in the electric motor used. To ensure the joint configuration does not 

exceed the rotational limit, the algorithm is applied in both stages. 

Joint Limit on Stage 1 

Since the first stage starts from the joint n , the joint configuration 1k +  must be ensured rotated within their limit. 

Therefor, joint k  will be repositioned, for 1, 1k n= − K . In this article, if the joint configuration exceeds the limit, 

the joint configuration is set to their maximum or minimum limit. In the first stage, the rotation of joint configuration 

1k +  can be calculated by finding the rotation difference between joint k  and new joint 1k +  as 

 

 $ $( ) $( )
* 1

1 0 0

k k

rot rot rotk
q Q Q

+

+
=  (32) 

In case the rotation on joint configuration 1k +  exceed their limit, joint k  will be repositioned as follow 

 

 

$ $( ) $( ) $ $( ) $

$ $ $( ) $( )

* ** * 1

1
1 1 0 0

* *1

0 0 1

lim
k k

kk rot rot rot rotk k

k k

k k

q q Q Q

Q Q q





+

+
+ +

+

+

 
 =  
 

=
 (33) 

Where $ 1limk+  is the joint configuration 1k +  rotation limit in pure Dual Quaternion rotation.  



Joint Limit on Stage 2 

During the second stage, the joint 1k +  is repositioned so that the rotation on joint configuration k  does not 

exceed their limit. After the joint configuration k  is updated as in equation (29), the rotation can be checked. In case 

the rotation exceeds their limit, the rotation on joint configuration k  can be set on the maximum or minimum rotation 

limit. 

Orientation control 

In the previous section, the basic concept of the proposed algorithm is presented. This section explains the 

orientation control algorithm in Dual Quaternion form. The orientation control uses the swing and twist approach. In 

this algorithm, joint 1n −  is assumed responsible for the orientation control and end effector joint n  are fixed. Should 

be noted, that the orientation control algorithm is applied separately from the position control algorithm. First of all, 

the target orientation can be defined as  

 

 $ $ $( ) $( ) $( ) $( )
* *1 1 1

0 0 00 00

t n n t n n

img rot rotQ Q Q Q Q Q
− − −

=  (34) 

In case the joint 1n −  and joint n  located in the same position, an imaginary distance should be applied. Joint j

, which is responsible for the orientation control can be rotated so that the end effector is pointed in the same direction 

as the target. Using equation (17), (18) and (19) the first line vector from joint j  to the current end effector can be 

found as follow 

 

 

$ $( ) $

( )

( )

*

00

*

*

2

2

nj

d r

d r

p QQ

p p
u

p p

=

=

 (35) 

The second line vector, from joint j  to the target orientation can be defined as follow 

 

 

$( ) $

( )

( )

*

00

*

*

2

2

tj

img

d r

d r

r QQ

r r
v

r r

=

=

$

 

  (36) 

It should be noted, that both of the line vector must be mapped on their plane as in equation (5). The Dual Quaternion 

pure rotation can be found using equation (24). Finally, the joint configuration j  can be rotated as 

 

 

$ $
j jq q =

 (37) 

Rotation around it own axis 

In some case the joint only rotate around it own axis (i.e. twist). This case occurs when 0u = . In this 

situation, the Dual Quaternion pure rotation can be defined as the orientation difference between the joint j  and target. 

 



 

$ $( ) $
*

0 0

j t

rot rotQ Q =
 (38) 

 

Algorithm 2: A full iteration of the orientation control in Dual Quaternion form. 

 
Input : The joint that responsible for orientation control $

0

j

Q , the joint configuration $
jq , the current 

end effector $
0

n

Q , the joint $
1

0

n

Q
−

 and the target position $
0

t

Q . 

 Output : The new joint configuration $
jq . 

2.0 % Find the difference between the last two joints and check their distance. 

2.1 $ $( ) $( )
*1

0 0

n n

k Q Q
−

=  

2.2 2 d rd k k=  

2.3 if 0d =  

2.4 $  1 0 0 0 0 0.5 0 0
T

k =  

2.5 end 

2.6 % Find the target orientation direction. 

2.7 $ $ $( ) $ $
*1 1

0 0 00

t n n t

img rot rotQ Q Q Q k
− −

=  

2.8 % Find the first line vector.  

2.9 $ $( ) $
*

0 0

j n

p Q Q=  

2.10 ( ) ( )
* *

2 2d r d ru p p p p=  

2.11 % Map the line vector on the plane. 

2.12 ( )0
T

T

v vu u u d d = −  
 

2.13 if 0u =  

2.14 $ $( ) $
*

0 0

j t

rot rotQ Q =  

2.15 else 

2.16 % Find the second line vector. 

2.17 $( ) $
*

0 0

j t

imgr Q Q=$  

2.18 ( ) ( )
* *

2 2d r d rv r r r r=  

2.19 % Map the line vector on the plane. 

2.20 ( )0
T

T

v vv v v d d = −  
 

2.21 % Find the Dual Quaternion pure rotation. 

2.22 $   ,01 0 0 0
T

uv  = −  
 

2.23 end 

2.24 $ $ $
j jq q =  



 

MULTIPLE DIRECTION OF ROTATION 

This section, explain how to apply the proposed algorithm for a manipulator with multiple directions of rotation. 

It should be noted, for a manipulator with multiple directions of rotation, each joint should only rotate with respect to 

its direction of rotation while moving the end-effector position and orientation closer to the target. To apply the 

algorithm in multiple direction of rotation, the following step are applied. 

 

1. Define each joint direction of rotation. 

2. Define the joint responsible for position control. 

3. Define the joint responsible for orientation control. 

4. Group the position control joint based on their direction of rotation. 

5. Run the position control algorithm for all the direction of rotation from Step 4. 

6. Run the orientation control for the joint defined in Step 2. 

7. Check for system error.  

8. If the error is greater than the stated acceptable tolerance, repeat step 5 through 7. Otherwise, the process end. 

 

To explain further step 1 to 4, PUMA and KUKA manipulator with 6 degree of freedom as in FIGURE 3 is used. 

The first three joints (i.e. joint 1,2 and 3) are responsible for the position control and the last three joints (i.e. joint 4,5 

and 6) are responsible for the orientation control. For position control, the joints are divided into two groups. The first 

group, is for joint 1 that is rotated on the z-axis. The second group is for joint 2 and joint 3 which is rotated on the y-

axis.  

 

  
(a) (b) 

FIGURE 3. Most used type of manipulator model. (a) PUMA manipulator, (b) KUKA manipulator 

 

EXPERIMENTAL RESULTS 

A target database consisting of 7200 points has been created for the validation and testing of the proposed Inverse 

Kinematics algorithm. The database consists of only reachable targets and targets with different distances from the 

end effectors for model in FIGURE 1. The error tolerance for these experiments were set to be less than 0.01. 

This article compares the proposed algorithm with Dual Quaternion Cyclic Coordinate Descent (CCD) algorithm. 

They were compared with respect to their processing time, computational cost, number of iterations needed to reach 

the target and the error convergence. The runtimes were recorded in milliseconds and were measured with custom 

MATLAB code on an Intel Core i5 2.5 GHz. No optimizations were used for both methods reported in TABLE 1.  

The Dual Quaternion FABRIK algorithm requires on average 7 iterations with 62.16 milliseconds to reach the 

target. However, Dual Quaternion CCD requires in average 12 iterations with 66.03 milliseconds. FIGURE 4 is an 



example of one of the errors plotted against the number of iterations for both methods. The proposed algorithm error 

converges at a faster rate compared to the Dual Quaternion CCD. In the beginning the error converges accelerated 

then gradually decelerate as it reaches the target.  

One of the advantages that has been observed from the experiment is that, the proposed algorithm produces better 

movement in each iteration as shown in FIGURE 5 (a). Dual Quaternion CCD tend to produce an excessive movement 

at the beginning before converging to the target as in FIGURE 5 (b). Although, when the target is closer to the base 

the proposed algorithm has been observed to require a higher number of iterations. The reason for this behavior is not 

analyzed in this article. 

 

TABLE 1. To format a table caption, use the Microsoft Word template style: Table Caption. The text  

 Number of Iteration Matlab exe. Time (ms) Time Per Iteration (ms) 

DQ FABRIK 
6.94850 62.16 8.685 

DQ CCD 
11.66467 66.03 5.3075 

 

 

 

FIGURE 4. Number of iteration against the position error 

 

  

(a) (b) 

FIGURE 5. An example of the poses for both Dual Quaternion algorithm in each iteration. (a) Dual Quaternion FABRIK 

result, (b) Dual Quaternion CCD result 
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Moreover, the experiment tested both algorithms to move along a continues point on a circle. The end effector 

trajectory for both algorithms are plotted in FIGURE 6. From the results in FIGURE 6 (a) and (b), it can be concluded 

that when the distances between the points are closer to each other, both methods perform equally well. However, 

when the distances between the points are further apart the proposed algorithm perform better than Dual Quaternion 

CCD.  

 

  
(a) (b) 

  
(c) (d) 

FIGURE 6. Example of the end effector trajectory for both algorithms following a continuous point. (a) Dual Quaternion 

FABRIK end effector trajectory with points 10 degree apart, (b) Dual Quaternion CCD end effector trajectory with points 10 

degree apart, (c) Dual Quaternion FABRIK end effector trajectory with points 30 degree apart, (d) Dual Quaternion CCD end 

effector trajectory with points 30 degree apart. 

 

This article test the proposed algorithm with different type of manipulator model such as KUKA and PUMA  

manipulators as shown in FIGURE 3. FIGURE 7 (a) represents a KUKA manipulator with z-axis rotation on joint 5. 

FIGURE 7 (c) represent KUKA manipulator with y-axis rotation on joint 5. While FIGURE 7 (e) represent the PUMA 

manipulator. Based on the result, the final position and orientation of the manipulator produces the same poses. 

However, each manipulator model requires a different number of iterations to reach the target’s position and 

orientation, depending on their configuration. As in FIGURE 7 (d) the number of iterations were the highest. The 

orientation control joint 5, rotate on the y-axis. However, our target orientation is on the z-axis on the 90 degrees. In 

this experiment, it is obvious that the orientation control causes the manipulator to require a higher number of 

iterations. If the orientation control is ignored all manipulator models will reach the target at a faster rate with similar 

results. In conclusion from this experiment, the Dual Quaternion Inverse Kinematics algorithm based on FABRIK 

methodology has proven to work for all models. There are definitely some room for improvement on the orientation 

control. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

FIGURE 7. Example of the result poses for Dual Quaternion FABRIK algorithm with different manipulator models. (a) 

KUKA manipulator with joint 5 rotate on z-axis, (b) Number of iterations against orientation and position error for KUKA 

manipulator with joint 5 rotate on z-axis (c) KUKA manipulator with joint 5 rotate on y-axis, (d) Number of iterations against 

orientation and position error for KUKA manipulator with joint 5 rotate on y-axis, (e) PUMA manipulator, (f) Number of 

iterations against orientation and position error for PUMA manipulator. 
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CONCLUSION AND FUTURE WORK 

This article described an alternative solution to solve inverse kinematics problems in the Dual Quaternion Form. 

Based on the results from the experiment, the proposed algorithm on average required less number of iterations 

compared to Dual Quaternion CCD. Moreover, with the concept of updating the joint in a forward and backward 

iteration mode, the proposed algorithm provided smooth poses in each iteration and does not cause any excessive 

movement. This approach caused the algorithm to accelerate at the beginning and gradually decelerate when as it 

reached the target. 

Furthermore, the same algorithm has been proven to be applicable to different model of manipulators. This 

algorithm required minimal changes in their directions of rotation. This is because the proposed algorithm considered 

the direction of rotation in their iteration process. Besides, no additional task is required to be applied to the joint’s 

limit algorithm as the joint rotation information is available at all time.  

However, during the experiment, it is observed that the number of iterations increases significantly as the target 

approaches the base. In the future, it is suggested to test the algorithm with coefficient on the joint rotation. In addition, 

the orientation control algorithm was designed as a separate algorithm. This causes more iterations as the error for 

orientation and position move inconsistently. In some cases, the position error tends to converge faster than the 

orientation error or vice versa. Because of this, in the future it is suggested to reformulate the orientation control 

algorithm and combine it in the main position algorithm.  

Moreover, during the experiment, it has been observed that the algorithm suffers from a minor singularity issues. 

This is seen in traditional FABRIK and CCD [5]. To avoid these issues, it is best to find a solution to identify when 

the singularity may occur during the iteration process. Lastly, it is suggested to design a solution that would be able 

to check if the target orientation and position are reachable in Dual Quaternion form.   
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